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Abstract: This paper deals with road detection in an outdoor environment. By comparison with
preceding approaches, which use various sensors, our system uses only a monocular camera. In this
paper, we propose a novel approach - a fusion of frequency based vanishing point estimation and
probabilistically based color segmentation.

Keywords: Road detection, Vanishing point estimation, Mixture of Gaussians, Gabor wavelets

1 INTRODUCTION

The mobile robotics community made an enormous effort to build robots with elements of autonomous
behavior during the past two decades. The field of possible objectives is various from maze solving
robots, letter–carrier robots to fully autonomous vehicles which can operate in an unknown environ-
ment. Many successful projects has proven in the past that the idea of fully autonomous vehicle is not
utopia (e.g. DARPA Grand Challenges).

Many papers about vision-based road segmentation have been published - such approaches usually
employ many various and expensive sensors, including Radar, Lidar or stereo vision. There exist
many situations, when it is inconvenient or even impossible to use additional sensors instead of a
monocular camera (robots are usually already equipped).

2 SYSTEM DESIGN

Let us define some important features and demands of the system: the system has to reliably find the
way in diverse light conditions (shadows, overexposed highlights, . . . ), work reliably on both, struc-
tured and ill-structured roads (sand, concrete, tarmac, . . . ) and use a minimum number of sensors.

We fulfill these demands by a fusion of the frequency based estimation of so called vanishing point
and probabilistically based texture segmentation. A combination of two different approaches, allows
us to solve difficult situations without any a priori knowledge of robot’s environment. The basic idea
of our solution is estimation of the vanishing point, which determines the training area for texture
segmentation. Next, road color models are constructed from sample pixels defined by the training
area. These models are associated with previously learned models, which are stored in a memory.
Further, learned models are adaptively updated. Therefore, the models include both the road colors’
history and the current road appearance.

3 VANISHING POINT ESTIMATION

Parallel lines in the real world, do not look like parallel lines under the perspective projection. There-
fore, borders of each straight road in an image plane, converge at some point, the so called vanishing
point. The first step of a vanishing point estimation algorithm is, the estimation of the dominant
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Figure 1: Input image (a), estimated dominant orientations (b), voting function (c), output (d).

orientation θ(p) of an image at pixel p(x,y). Our approach is based on a bank of 2D Gabor wavelet
filters since they are known to be accurate [2].

The set of k× k Gabor kernels for an orientation θ, wavelength λ and odd or even phase, the filters
are defined by

ĝodd(x,y,θ,λ) = exp
(
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)
, (1)

where x = y = 0 is the kernel center, σ = k
9 , size of kernel k is determined by wavelength as k = 10λ

π
and λ = 2log2(Iw)−5 provides a good trade-off between computational complexity and a precision. To
obtain even kernel, “sin” is simply substituted by “cos”. Next, a and b are defined as

a = xcos(θ)+ ysin(θ),
b =−xsin(θ)+ ycos(θ). (2)

Then, ĝ ’s DC component is subtracted from Gabor kernel and kernel’s coefficients are normalized,
so that L2 = 1.

To get the best characteristics of a local texture jet, a complex response of the convolution of an
image I with each of n evenly spaced Gabor filter orientations is computed. For n even and odd
pairs of Gabor filters (e.g. n = 36), the dominant orientation at pixel p(x,y) is chosen as the filter
orientation which elicits the maximum complex response at that location.

The set of possible vanishing points for each pixel θmax(p) with dominant orientation θmax are all
pixels along the line defined by (p, p(θmax)). Let the angle of the line joining an image pixel p and a
vanishing point candidate v is α(p,v), then p votes for v if the difference between α(p,v) and θmax(p)
is within the dominant orientation estimator’s angular resolution (coefficient γ = 2 sets selectivity).

vote(p,v) =
{

1 if|α(p,v)−θmax(p)| ≤ γπ
n ,

0 otherwise.
(3)

Next, the definition of an objective function for each vanishing point candidate v is straightforward

votes(v) = ∑
p∈R(v)

vote(p,v), (4)

where R(v) is a voting region, which includes all image pixels below the horizontal line l determined
by the current vanishing point candidate v.

Instead of usage of output independently per each frame, we rather run a smoothing filter (CON-
DENSATION) throughout the whole sequence to reduce influence of noise and to avoid the jumpy
characteristic of output. Particle filters (sequential Monte Carlo) are often used in computer vision
since they overcome many limiting assumptions of Kalman filters.



4 ROAD DETECTION

Vanishing points provides information about direction, however we do not have any information about
a road surface and free space ahead of the robot. Thus, another algorithm based on adaptive color
segmentation is needed - Gaussian Mixture Models (GMM) [1]. We use a hierarchical agglomerative
k-means clustering (HAC) to construct GMM models from training area defined by a vanishing point.
Each cluster c is represented by its mean µ, covariance matrix Σ and a mass m. In addition to c training
models, nl learned models exist, which represent “history of the road” with exponential forgetting.
At the beginning, all color models are null. Each training model is compared with learned models

(µL −µT )
T(ΣL +ΣT )

−1(µL −µT )≤ dsimilar, (5)

where µ is a mean vector, and Σ is a covariance matrix. If the training model overlaps any learned
model, the learned model is updated according to formulas

µupdated =
mLµL +mT µT

mL +mT
, Σupdated =

mLΣL +mT ΣT

mL +mT
, mupdated = mL +mT , (6)

where m is associated mass to the model. Otherwise, there are two possibilities. If all models are
not full, then the new model is created. If all models are full, then the model with the lowest mass is
discarded and a new one is created in its place. Next, all pixels of the image are assigned a “roadness”
score, which is measured as a minimum of the Mahalanobis distance between each pixel and learned
models to measure a degree of belonging to the road/non-road region of pixels outside the training
area

D(p,µi) = min
i
((p−µi)

T)Σ−1
i (p−µi)) (7)

These values can be used as a input to some higher AI or to identify patches that create the road.
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Figure 2: Output of proposed algorithm.

5 CONCLUSION

We have presented a novel method for road detection in an outdoor environment. Our method neither
need any additional sensor, nor previously learned models. Proposed algorithm works well on both,
structured and unstructured roads with various types of surfaces and dynamically changing light con-
ditions. In fact, whole algorithm is much more complicated. Due to the lack of space, only basic parts
are described. Extended paper will be presented at IEEE ICRA 2011.
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